3.79 \(\int \frac{(e x)^{-1+2 n}}{a+b \text{csch}(c+d x^n)} \, dx\)

Optimal. Leaf size=291 \[ -\frac{b x^{-2 n} (e x)^{2 n} \text{PolyLog}\left (2,-\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}\right )}{a d^2 e n \sqrt{a^2+b^2}}+\frac{b x^{-2 n} (e x)^{2 n} \text{PolyLog}\left (2,-\frac{a e^{c+d x^n}}{\sqrt{a^2+b^2}+b}\right )}{a d^2 e n \sqrt{a^2+b^2}}-\frac{b x^{-n} (e x)^{2 n} \log \left (\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}+1\right )}{a d e n \sqrt{a^2+b^2}}+\frac{b x^{-n} (e x)^{2 n} \log \left (\frac{a e^{c+d x^n}}{\sqrt{a^2+b^2}+b}+1\right )}{a d e n \sqrt{a^2+b^2}}+\frac{(e x)^{2 n}}{2 a e n} \]

[Out]

(e*x)^(2*n)/(2*a*e*n) - (b*(e*x)^(2*n)*Log[1 + (a*E^(c + d*x^n))/(b - Sqrt[a^2 + b^2])])/(a*Sqrt[a^2 + b^2]*d*
e*n*x^n) + (b*(e*x)^(2*n)*Log[1 + (a*E^(c + d*x^n))/(b + Sqrt[a^2 + b^2])])/(a*Sqrt[a^2 + b^2]*d*e*n*x^n) - (b
*(e*x)^(2*n)*PolyLog[2, -((a*E^(c + d*x^n))/(b - Sqrt[a^2 + b^2]))])/(a*Sqrt[a^2 + b^2]*d^2*e*n*x^(2*n)) + (b*
(e*x)^(2*n)*PolyLog[2, -((a*E^(c + d*x^n))/(b + Sqrt[a^2 + b^2]))])/(a*Sqrt[a^2 + b^2]*d^2*e*n*x^(2*n))

________________________________________________________________________________________

Rubi [A]  time = 0.545208, antiderivative size = 291, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {5441, 5437, 4191, 3322, 2264, 2190, 2279, 2391} \[ -\frac{b x^{-2 n} (e x)^{2 n} \text{PolyLog}\left (2,-\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}\right )}{a d^2 e n \sqrt{a^2+b^2}}+\frac{b x^{-2 n} (e x)^{2 n} \text{PolyLog}\left (2,-\frac{a e^{c+d x^n}}{\sqrt{a^2+b^2}+b}\right )}{a d^2 e n \sqrt{a^2+b^2}}-\frac{b x^{-n} (e x)^{2 n} \log \left (\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}+1\right )}{a d e n \sqrt{a^2+b^2}}+\frac{b x^{-n} (e x)^{2 n} \log \left (\frac{a e^{c+d x^n}}{\sqrt{a^2+b^2}+b}+1\right )}{a d e n \sqrt{a^2+b^2}}+\frac{(e x)^{2 n}}{2 a e n} \]

Antiderivative was successfully verified.

[In]

Int[(e*x)^(-1 + 2*n)/(a + b*Csch[c + d*x^n]),x]

[Out]

(e*x)^(2*n)/(2*a*e*n) - (b*(e*x)^(2*n)*Log[1 + (a*E^(c + d*x^n))/(b - Sqrt[a^2 + b^2])])/(a*Sqrt[a^2 + b^2]*d*
e*n*x^n) + (b*(e*x)^(2*n)*Log[1 + (a*E^(c + d*x^n))/(b + Sqrt[a^2 + b^2])])/(a*Sqrt[a^2 + b^2]*d*e*n*x^n) - (b
*(e*x)^(2*n)*PolyLog[2, -((a*E^(c + d*x^n))/(b - Sqrt[a^2 + b^2]))])/(a*Sqrt[a^2 + b^2]*d^2*e*n*x^(2*n)) + (b*
(e*x)^(2*n)*PolyLog[2, -((a*E^(c + d*x^n))/(b + Sqrt[a^2 + b^2]))])/(a*Sqrt[a^2 + b^2]*d^2*e*n*x^(2*n))

Rule 5441

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Dist[(e^IntPart[m]*(e*
x)^FracPart[m])/x^FracPart[m], Int[x^m*(a + b*Csch[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]

Rule 5437

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplif
y[(m + 1)/n], 0] && IntegerQ[p]

Rule 4191

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, 1/(Sin[e + f*x]^n/(b + a*Sin[e + f*x])^n), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[n, 0] &
& IGtQ[m, 0]

Rule 3322

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Dist[2,
Int[((c + d*x)^m*E^(-(I*e) + f*fz*x))/(-(I*b) + 2*a*E^(-(I*e) + f*fz*x) + I*b*E^(2*(-(I*e) + f*fz*x))), x], x]
 /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
 Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{(e x)^{-1+2 n}}{a+b \text{csch}\left (c+d x^n\right )} \, dx &=\frac{\left (x^{-2 n} (e x)^{2 n}\right ) \int \frac{x^{-1+2 n}}{a+b \text{csch}\left (c+d x^n\right )} \, dx}{e}\\ &=\frac{\left (x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{x}{a+b \text{csch}(c+d x)} \, dx,x,x^n\right )}{e n}\\ &=\frac{\left (x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \left (\frac{x}{a}-\frac{b x}{a (b+a \sinh (c+d x))}\right ) \, dx,x,x^n\right )}{e n}\\ &=\frac{(e x)^{2 n}}{2 a e n}-\frac{\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{x}{b+a \sinh (c+d x)} \, dx,x,x^n\right )}{a e n}\\ &=\frac{(e x)^{2 n}}{2 a e n}-\frac{\left (2 b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{e^{c+d x} x}{-a+2 b e^{c+d x}+a e^{2 (c+d x)}} \, dx,x,x^n\right )}{a e n}\\ &=\frac{(e x)^{2 n}}{2 a e n}-\frac{\left (2 b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{e^{c+d x} x}{2 b-2 \sqrt{a^2+b^2}+2 a e^{c+d x}} \, dx,x,x^n\right )}{\sqrt{a^2+b^2} e n}+\frac{\left (2 b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{e^{c+d x} x}{2 b+2 \sqrt{a^2+b^2}+2 a e^{c+d x}} \, dx,x,x^n\right )}{\sqrt{a^2+b^2} e n}\\ &=\frac{(e x)^{2 n}}{2 a e n}-\frac{b x^{-n} (e x)^{2 n} \log \left (1+\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d e n}+\frac{b x^{-n} (e x)^{2 n} \log \left (1+\frac{a e^{c+d x^n}}{b+\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d e n}+\frac{\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \log \left (1+\frac{2 a e^{c+d x}}{2 b-2 \sqrt{a^2+b^2}}\right ) \, dx,x,x^n\right )}{a \sqrt{a^2+b^2} d e n}-\frac{\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \log \left (1+\frac{2 a e^{c+d x}}{2 b+2 \sqrt{a^2+b^2}}\right ) \, dx,x,x^n\right )}{a \sqrt{a^2+b^2} d e n}\\ &=\frac{(e x)^{2 n}}{2 a e n}-\frac{b x^{-n} (e x)^{2 n} \log \left (1+\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d e n}+\frac{b x^{-n} (e x)^{2 n} \log \left (1+\frac{a e^{c+d x^n}}{b+\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d e n}+\frac{\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{2 a x}{2 b-2 \sqrt{a^2+b^2}}\right )}{x} \, dx,x,e^{c+d x^n}\right )}{a \sqrt{a^2+b^2} d^2 e n}-\frac{\left (b x^{-2 n} (e x)^{2 n}\right ) \operatorname{Subst}\left (\int \frac{\log \left (1+\frac{2 a x}{2 b+2 \sqrt{a^2+b^2}}\right )}{x} \, dx,x,e^{c+d x^n}\right )}{a \sqrt{a^2+b^2} d^2 e n}\\ &=\frac{(e x)^{2 n}}{2 a e n}-\frac{b x^{-n} (e x)^{2 n} \log \left (1+\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d e n}+\frac{b x^{-n} (e x)^{2 n} \log \left (1+\frac{a e^{c+d x^n}}{b+\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d e n}-\frac{b x^{-2 n} (e x)^{2 n} \text{Li}_2\left (-\frac{a e^{c+d x^n}}{b-\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d^2 e n}+\frac{b x^{-2 n} (e x)^{2 n} \text{Li}_2\left (-\frac{a e^{c+d x^n}}{b+\sqrt{a^2+b^2}}\right )}{a \sqrt{a^2+b^2} d^2 e n}\\ \end{align*}

Mathematica [C]  time = 4.03708, size = 1180, normalized size = 4.05 \[ \frac{(e x)^{2 n} \text{csch}\left (d x^n+c\right ) \left (\frac{2 b \left (\frac{i \pi \tanh ^{-1}\left (\frac{b \tanh \left (\frac{1}{2} \left (d x^n+c\right )\right )-a}{\sqrt{a^2+b^2}}\right )}{\sqrt{a^2+b^2}}+\frac{2 \left (c+i \cos ^{-1}\left (-\frac{i b}{a}\right )\right ) \tan ^{-1}\left (\frac{(a-i b) \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )+\left (-2 i d x^n-2 i c+\pi \right ) \tanh ^{-1}\left (\frac{(b-i a) \tan \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )-\left (\cos ^{-1}\left (-\frac{i b}{a}\right )-2 \tan ^{-1}\left (\frac{(a-i b) \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )\right ) \log \left (\frac{(a+i b) \left (a-i b+\sqrt{-a^2-b^2}\right ) \left (i \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )+1\right )}{a \left (a+i b+i \sqrt{-a^2-b^2} \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )\right )}\right )-\left (\cos ^{-1}\left (-\frac{i b}{a}\right )+2 \tan ^{-1}\left (\frac{(a-i b) \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )\right ) \log \left (\frac{i (a+i b) \left (-a+i b+\sqrt{-a^2-b^2}\right ) \left (\cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )+i\right )}{a \left (a+i b+i \sqrt{-a^2-b^2} \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )\right )}\right )+\left (\cos ^{-1}\left (-\frac{i b}{a}\right )+2 \tan ^{-1}\left (\frac{(a-i b) \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )-2 i \tanh ^{-1}\left (\frac{(b-i a) \tan \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )\right ) \log \left (-\frac{(-1)^{3/4} \sqrt{-a^2-b^2} e^{-\frac{d x^n}{2}-\frac{c}{2}}}{\sqrt{2} \sqrt{-i a} \sqrt{b+a \sinh \left (d x^n+c\right )}}\right )+\left (\cos ^{-1}\left (-\frac{i b}{a}\right )-2 \tan ^{-1}\left (\frac{(a-i b) \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )+2 i \tanh ^{-1}\left (\frac{(b-i a) \tan \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )}{\sqrt{-a^2-b^2}}\right )\right ) \log \left (\frac{\sqrt [4]{-1} \sqrt{-a^2-b^2} e^{\frac{1}{2} \left (d x^n+c\right )}}{\sqrt{2} \sqrt{-i a} \sqrt{b+a \sinh \left (d x^n+c\right )}}\right )+i \left (\text{PolyLog}\left (2,\frac{\left (i b+\sqrt{-a^2-b^2}\right ) \left (a+i b-i \sqrt{-a^2-b^2} \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )\right )}{a \left (a+i b+i \sqrt{-a^2-b^2} \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )\right )}\right )-\text{PolyLog}\left (2,\frac{\left (b+i \sqrt{-a^2-b^2}\right ) \left (i a-b+\sqrt{-a^2-b^2} \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )\right )}{a \left (a+i b+i \sqrt{-a^2-b^2} \cot \left (\frac{1}{4} \left (2 i d x^n+2 i c+\pi \right )\right )\right )}\right )\right )}{\sqrt{-a^2-b^2}}\right ) x^{-2 n}}{d^2}+1\right ) \left (b+a \sinh \left (d x^n+c\right )\right )}{2 a e n \left (a+b \text{csch}\left (d x^n+c\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*x)^(-1 + 2*n)/(a + b*Csch[c + d*x^n]),x]

[Out]

((e*x)^(2*n)*Csch[c + d*x^n]*(1 + (2*b*((I*Pi*ArcTanh[(-a + b*Tanh[(c + d*x^n)/2])/Sqrt[a^2 + b^2]])/Sqrt[a^2
+ b^2] + (2*(c + I*ArcCos[((-I)*b)/a])*ArcTan[((a - I*b)*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4])/Sqrt[-a^2 - b^2]
] + ((-2*I)*c + Pi - (2*I)*d*x^n)*ArcTanh[(((-I)*a + b)*Tan[((2*I)*c + Pi + (2*I)*d*x^n)/4])/Sqrt[-a^2 - b^2]]
 - (ArcCos[((-I)*b)/a] - 2*ArcTan[((a - I*b)*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4])/Sqrt[-a^2 - b^2]])*Log[((a +
 I*b)*(a - I*b + Sqrt[-a^2 - b^2])*(1 + I*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^
2]*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4]))] - (ArcCos[((-I)*b)/a] + 2*ArcTan[((a - I*b)*Cot[((2*I)*c + Pi + (2*I
)*d*x^n)/4])/Sqrt[-a^2 - b^2]])*Log[(I*(a + I*b)*(-a + I*b + Sqrt[-a^2 - b^2])*(I + Cot[((2*I)*c + Pi + (2*I)*
d*x^n)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4]))] + (ArcCos[((-I)*b)/a] + 2*
ArcTan[((a - I*b)*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4])/Sqrt[-a^2 - b^2]] - (2*I)*ArcTanh[(((-I)*a + b)*Tan[((2
*I)*c + Pi + (2*I)*d*x^n)/4])/Sqrt[-a^2 - b^2]])*Log[-(((-1)^(3/4)*Sqrt[-a^2 - b^2]*E^(-c/2 - (d*x^n)/2))/(Sqr
t[2]*Sqrt[(-I)*a]*Sqrt[b + a*Sinh[c + d*x^n]]))] + (ArcCos[((-I)*b)/a] - 2*ArcTan[((a - I*b)*Cot[((2*I)*c + Pi
 + (2*I)*d*x^n)/4])/Sqrt[-a^2 - b^2]] + (2*I)*ArcTanh[(((-I)*a + b)*Tan[((2*I)*c + Pi + (2*I)*d*x^n)/4])/Sqrt[
-a^2 - b^2]])*Log[((-1)^(1/4)*Sqrt[-a^2 - b^2]*E^((c + d*x^n)/2))/(Sqrt[2]*Sqrt[(-I)*a]*Sqrt[b + a*Sinh[c + d*
x^n]])] + I*(PolyLog[2, ((I*b + Sqrt[-a^2 - b^2])*(a + I*b - I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x^
n)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4]))] - PolyLog[2, ((b + I*Sqrt[-a^2
 - b^2])*(I*a - b + Sqrt[-a^2 - b^2]*Cot[((2*I)*c + Pi + (2*I)*d*x^n)/4]))/(a*(a + I*b + I*Sqrt[-a^2 - b^2]*Co
t[((2*I)*c + Pi + (2*I)*d*x^n)/4]))]))/Sqrt[-a^2 - b^2]))/(d^2*x^(2*n)))*(b + a*Sinh[c + d*x^n]))/(2*a*e*n*(a
+ b*Csch[c + d*x^n]))

________________________________________________________________________________________

Maple [C]  time = 0.128, size = 577, normalized size = 2. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(-1+2*n)/(a+b*csch(c+d*x^n)),x)

[Out]

1/2/a/n*x*exp(-1/2*(-1+2*n)*(I*csgn(I*e*x)^3*Pi-I*Pi*csgn(I*e)*csgn(I*e*x)^2-I*Pi*csgn(I*x)*csgn(I*e*x)^2+I*cs
gn(I*e*x)*csgn(I*e)*csgn(I*x)*Pi-2*ln(x)-2*ln(e)))-2*b/a*exp(-I*Pi*n*csgn(I*e)*csgn(I*x)*csgn(I*e*x))*exp(I*Pi
*n*csgn(I*e)*csgn(I*e*x)^2)*exp(I*Pi*n*csgn(I*x)*csgn(I*e*x)^2)*exp(-I*Pi*n*csgn(I*e*x)^3)*exp(1/2*I*Pi*csgn(I
*e)*csgn(I*x)*csgn(I*e*x))*exp(-1/2*I*Pi*csgn(I*e)*csgn(I*e*x)^2)*exp(-1/2*I*Pi*csgn(I*x)*csgn(I*e*x)^2)*exp(1
/2*I*Pi*csgn(I*e*x)^3)*(e^n)^2/e*exp(c)/n/d^2*(1/2*x^n*d*(ln((a*exp(2*c+d*x^n)+exp(c)*b-(a^2*exp(2*c)+exp(2*c)
*b^2)^(1/2))/(exp(c)*b-(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2)))-ln((a*exp(2*c+d*x^n)+exp(c)*b+(a^2*exp(2*c)+exp(2*c
)*b^2)^(1/2))/(exp(c)*b+(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2))))/(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2)+1/2*(dilog((a*e
xp(2*c+d*x^n)+exp(c)*b-(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2))/(exp(c)*b-(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2)))-dilog(
(a*exp(2*c+d*x^n)+exp(c)*b+(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2))/(exp(c)*b+(a^2*exp(2*c)+exp(2*c)*b^2)^(1/2))))/(
a^2*exp(2*c)+exp(2*c)*b^2)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -2 \, b e^{2 \, n} \int \frac{e^{\left (d x^{n} + 2 \, n \log \left (x\right ) + c\right )}}{a^{2} e x e^{\left (2 \, d x^{n} + 2 \, c\right )} + 2 \, a b e x e^{\left (d x^{n} + c\right )} - a^{2} e x}\,{d x} + \frac{e^{2 \, n - 1} x^{2 \, n}}{2 \, a n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+2*n)/(a+b*csch(c+d*x^n)),x, algorithm="maxima")

[Out]

-2*b*e^(2*n)*integrate(e^(d*x^n + 2*n*log(x) + c)/(a^2*e*x*e^(2*d*x^n + 2*c) + 2*a*b*e*x*e^(d*x^n + c) - a^2*e
*x), x) + 1/2*e^(2*n - 1)*x^(2*n)/(a*n)

________________________________________________________________________________________

Fricas [B]  time = 2.48899, size = 3330, normalized size = 11.44 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+2*n)/(a+b*csch(c+d*x^n)),x, algorithm="fricas")

[Out]

1/2*((a^2 + b^2)*d^2*cosh((2*n - 1)*log(e))*cosh(n*log(x))^2 + (a^2 + b^2)*d^2*cosh(n*log(x))^2*sinh((2*n - 1)
*log(e)) + ((a^2 + b^2)*d^2*cosh((2*n - 1)*log(e)) + (a^2 + b^2)*d^2*sinh((2*n - 1)*log(e)))*sinh(n*log(x))^2
- 2*(a*b*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e)) + a*b*sqrt((a^2 + b^2)/a^2)*sinh((2*n - 1)*log(e)))*dilo
g(((a*sqrt((a^2 + b^2)/a^2) + b)*cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + (a*sqrt((a^2 + b^2)/a^2) + b)
*sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) - a)/a + 1) + 2*(a*b*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e
)) + a*b*sqrt((a^2 + b^2)/a^2)*sinh((2*n - 1)*log(e)))*dilog(-((a*sqrt((a^2 + b^2)/a^2) - b)*cosh(d*cosh(n*log
(x)) + d*sinh(n*log(x)) + c) + (a*sqrt((a^2 + b^2)/a^2) - b)*sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + a
)/a + 1) - 2*(a*b*c*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e)) + a*b*c*sqrt((a^2 + b^2)/a^2)*sinh((2*n - 1)*
log(e)))*log(2*a*cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + 2*a*sinh(d*cosh(n*log(x)) + d*sinh(n*log(x))
+ c) + 2*a*sqrt((a^2 + b^2)/a^2) + 2*b) + 2*(a*b*c*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e)) + a*b*c*sqrt((
a^2 + b^2)/a^2)*sinh((2*n - 1)*log(e)))*log(2*a*cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + 2*a*sinh(d*cos
h(n*log(x)) + d*sinh(n*log(x)) + c) - 2*a*sqrt((a^2 + b^2)/a^2) + 2*b) - 2*(a*b*d*sqrt((a^2 + b^2)/a^2)*cosh((
2*n - 1)*log(e))*cosh(n*log(x)) + a*b*c*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e)) + (a*b*d*sqrt((a^2 + b^2)
/a^2)*cosh(n*log(x)) + a*b*c*sqrt((a^2 + b^2)/a^2))*sinh((2*n - 1)*log(e)) + (a*b*d*sqrt((a^2 + b^2)/a^2)*cosh
((2*n - 1)*log(e)) + a*b*d*sqrt((a^2 + b^2)/a^2)*sinh((2*n - 1)*log(e)))*sinh(n*log(x)))*log(-((a*sqrt((a^2 +
b^2)/a^2) + b)*cosh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + (a*sqrt((a^2 + b^2)/a^2) + b)*sinh(d*cosh(n*log
(x)) + d*sinh(n*log(x)) + c) - a)/a) + 2*(a*b*d*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e))*cosh(n*log(x)) +
a*b*c*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e)) + (a*b*d*sqrt((a^2 + b^2)/a^2)*cosh(n*log(x)) + a*b*c*sqrt(
(a^2 + b^2)/a^2))*sinh((2*n - 1)*log(e)) + (a*b*d*sqrt((a^2 + b^2)/a^2)*cosh((2*n - 1)*log(e)) + a*b*d*sqrt((a
^2 + b^2)/a^2)*sinh((2*n - 1)*log(e)))*sinh(n*log(x)))*log(((a*sqrt((a^2 + b^2)/a^2) - b)*cosh(d*cosh(n*log(x)
) + d*sinh(n*log(x)) + c) + (a*sqrt((a^2 + b^2)/a^2) - b)*sinh(d*cosh(n*log(x)) + d*sinh(n*log(x)) + c) + a)/a
) + 2*((a^2 + b^2)*d^2*cosh((2*n - 1)*log(e))*cosh(n*log(x)) + (a^2 + b^2)*d^2*cosh(n*log(x))*sinh((2*n - 1)*l
og(e)))*sinh(n*log(x)))/((a^3 + a*b^2)*d^2*n)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e x\right )^{2 n - 1}}{a + b \operatorname{csch}{\left (c + d x^{n} \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(-1+2*n)/(a+b*csch(c+d*x**n)),x)

[Out]

Integral((e*x)**(2*n - 1)/(a + b*csch(c + d*x**n)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (e x\right )^{2 \, n - 1}}{b \operatorname{csch}\left (d x^{n} + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(-1+2*n)/(a+b*csch(c+d*x^n)),x, algorithm="giac")

[Out]

integrate((e*x)^(2*n - 1)/(b*csch(d*x^n + c) + a), x)